Recommendations for the Use of Antiretroviral Drugs in Pregnant Women with HIV Infection and Interventions to Reduce Perinatal HIV Transmission in the United States

Downloaded from https://aidsinfo.nih.gov/guidelines on 8/29/2020

Visit the AIDStop website to access the most up-to-date guideline.

Register for e-mail notification of guideline updates at https://aidsinfo.nih.gov/e-news.
Saquinavir (Invirase, SQV)

(Last updated December 7, 2018; last reviewed December 7, 2018)

Saquinavir is classified as Food and Drug Administration Pregnancy Category B. **Saquinavir should not be used during pregnancy.**

Animal Studies

Carcinogenicity

Saquinavir was neither mutagenic nor clastogenic in a series of *in vitro* and animal *in vivo* screening tests. Carcinogenicity studies found no indication of carcinogenic activity in rats and mice given saquinavir for approximately 2 years at doses that produced plasma exposures approximately 29% (in rats) and 65% (in mice) of those obtained in humans who received the recommended clinical dose boosted with ritonavir.¹

Reproduction/Fertility

Saquinavir has had no observable effects on reproductive performance, fertility, or embryo survival in rats. Because of the limited bioavailability of saquinavir in animals, the maximum plasma exposures achieved in rats were approximately 26% of those obtained in humans who received the recommended clinical dose boosted with ritonavir.¹

Teratogenicity/Adverse Pregnancy Outcomes

No evidence of embryotoxicity or teratogenicity of saquinavir has been found in rabbits or rats. Because of the limited bioavailability of saquinavir in animals and/or dosing limitations, the plasma exposures (measured as area under the curve [AUC] values) were approximately 29% (in rats) and 21% (in rabbits) of those obtained in humans who received the recommended clinical dose boosted with ritonavir.¹

Placental and Breast Milk Passage

Placental transfer of saquinavir in rats and rabbits was minimal. Saquinavir is excreted in the milk of lactating rats.¹

Human Studies in Pregnancy

Pharmacokinetics

Studies have investigated saquinavir pharmacokinetics (PK) during pregnancy using 800 mg to 1200 mg of the original hard-gel capsule formulation and ritonavir 100 mg. Saquinavir exposures were reduced in pregnant adults compared to nonpregnant adults, but the majority of subjects achieved adequate C₉₀₀ min.²-⁴ The PKs of saquinavir when using the current 500-mg tablets at a dose of saquinavir/ritonavir 1000 mg/100 mg twice daily have been studied in pregnant women in two studies.⁵,⁶ One study performed intensive sampling on pregnant women with HIV at 20 weeks’ gestation (n = 16), 33 weeks’ gestation (n = 31), and 6 weeks postpartum (n = 9). PK parameters were comparable during pregnancy and postpartum.⁵ The second study performed intensive sampling in 14 pregnant women at 24 and 34 weeks’ gestation and 6 weeks postpartum. Saquinavir AUC was similar during the second trimester and postpartum. Although there was a 50% reduction in saquinavir AUC during the third trimester compared to postpartum, no participant experienced loss of virologic control and all but one maintained adequate third-trimester trough levels of saquinavir.⁷ An observational study analyzed saquinavir concentrations in samples that were collected as part of clinical care between 11 and 13 hours after dosing with the tablet formulation (saquinavir/ritonavir 1000 mg/100 mg) in pregnant women with HIV during the third trimester (n = 20) and at delivery (n = 5). Saquinavir plasma concentrations averaged around 1.15 mg/L and exceeded 0.1 mg/L, the usual trough drug concentration target for saquinavir, in all but one subject.⁶

Placental and Breast Milk Passage

In a Phase 1 study in pregnant women and their infants (PACTG 386), placental passage of saquinavir was minimal.⁸ In addition, in a study of eight women treated with saquinavir during pregnancy, the cord
blood concentration of saquinavir was less than the assay limit of detection in samples from all of the women in the study.9 It is not known whether saquinavir is excreted in human milk.

Teratogenicity/Adverse Pregnancy Outcomes

Only 182 cases of first-trimester saquinavir exposure have been reported to the Antiretroviral Pregnancy Registry. Without more data, the prevalence of birth defects among infants exposed to saquinavir cannot be accurately calculated.10

Other Safety Information

One study of 42 pregnant women who received antiretroviral therapy that included saquinavir/ritonavir reported abnormal transaminase levels in 13 women (31\%) within 2 to 4 weeks of treatment initiation, although the abnormalities were mild (toxicity Grade 1–2 in most women, Grade 3 in one woman).11 In a study of 62 pregnant women on a regimen that included saquinavir/ritonavir, one severe adverse event occurred (maternal Grade 3 hepatotoxicity).6

In the U.S. PHACS/SMARTT cohort study, after adjusting for birth cohort and other factors, maternal use of saquinavir led to no increase in the likelihood of adverse metabolic, growth/development, cardiac, or neurological outcomes. Late language emergence was more likely among saquinavir-exposed infants at 1 year (odds ratio 2.72; 95\% CI, 1.09–6.91, \(P = 0.03 \)), but not at 2 years. No significant differences were observed for other neurodevelopmental outcomes.12

Excerpt from Table 10a

<table>
<thead>
<tr>
<th>Generic Name (Abbreviation)</th>
<th>Formulation</th>
<th>Dosing Recommendations</th>
<th>Use in Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saquinavir (SQV)</td>
<td>Tablet: 500 mg</td>
<td>Standard Adult Dose: SQV 1000 mg plus RTV 100 mg twice a day with food or within 2 hours after a meal</td>
<td>SQV should not be used during pregnancy.</td>
</tr>
<tr>
<td>Invirase</td>
<td>Capsule: 200 mg</td>
<td>PK in Pregnancy: Based on limited data, SQV exposure may be reduced in pregnancy, but this effect is not sufficient to warrant a dose change.</td>
<td>Contraindicated in patients with pre-existing cardiac conduction system disease. Baseline ECG recommended before starting, because PR and/or QT interval prolongations have been observed.</td>
</tr>
<tr>
<td>Note: Must be combined with low-dose RTV for PK boosting</td>
<td></td>
<td>Dosing in Pregnancy: No change in dose indicated.</td>
<td>Low placental transfer to fetus.b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Insufficient data to assess for teratogenicity in humans. No evidence of teratogenicity in rats or rabbits. Must be boosted with low-dose RTV.</td>
</tr>
</tbody>
</table>

a Individual ARV drug dosages may need to be adjusted in patients with renal or hepatic insufficiency (for details, see the Adult and Adolescent Guidelines, Appendix B, Table 8).

b Placental transfer categories are determined by mean or median cord blood/maternal delivery plasma drug ratio:

- **High:** >0.6
- **Moderate:** 0.3–0.6
- **Low:** <0.3

Key to Acronyms: ECG = electrocardiogram; PK = pharmacokinetic; RTV = ritonavir; SQV = saquinavir

References

3. Lopez-Cortes LF, Ruiz-Valderas R, Pascual R, Rodriguez M, Marin Niebla A. Once-daily saquinavir-hgc plus low-

