Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

Downloaded from https://aidsinfo.nih.gov/guidelines on 4/26/2020

Visit the AIDSinfo website to access the most up-to-date guideline.

Register for e-mail notification of guideline updates at https://aidsinfo.nih.gov/e-news.
Atazanavir (ATV, Reyataz) (Last updated April 14, 2020; last reviewed April 14, 2020)

Formulations

Powder Packet: 50 mg/packet
Capsules: 150 mg, 200 mg, and 300 mg

Generic Formulations

- 150 mg, 200 mg, and 300 mg capsules

Fixed-Dose Combination Tablets:

- [Evotaz] Atazanavir 300 mg/cobicistat 150 mg

Capsules and powder packets are not interchangeable.

Dosing Recommendations

Neonate Dose:

- Atazanavir (ATV) is not approved for use in neonates and infants aged <3 months. ATV should not be administered to neonates due to risks associated with hyperbilirubinemia (e.g., bilirubin-induced neurologic dysfunction).

Infant and Child Dose

Powder Formulation of Atazanavir:*a

- The powder formulation of ATV must be administered with ritonavir (RTV).
- The powder formulation is not approved for use in infants aged <3 months or weighing <5 kg.

Atazanavir Powder Dosing Table for Infants and Children Aged ≥3 Months and Weighing ≥5 kg*

<table>
<thead>
<tr>
<th>Weight</th>
<th>Once-Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 kg to <15 kg</td>
<td>ATV 200 mg (four packets) plus RTV 80 mg (1 mL oral solution), both with food</td>
</tr>
<tr>
<td>15 kg to <25 kg</td>
<td>ATV 250 mg (five packets) plus RTV 80 mg (1 mL oral solution), both with food</td>
</tr>
</tbody>
</table>

Capsule Formulation of Atazanavir:*a

- ATV capsules are not approved for use in children aged <6 years or weighing <15 kg.

Atazanavir Capsule Dosing Table for Children and Adolescents Aged ≥6 Years and Weighing ≥15 kg

<table>
<thead>
<tr>
<th>Weight</th>
<th>Once-Daily Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td><15 kg</td>
<td>Capsules not recommended</td>
</tr>
<tr>
<td>15 kg to <35 kg</td>
<td>ATV/rc 200 mg/100 mg, both with food</td>
</tr>
<tr>
<td>≥35 kg</td>
<td>ATV/rc 300 mg/100 mg, both with food</td>
</tr>
</tbody>
</table>

Selected Adverse Events

- Indirect hyperbilirubinemia
- Prolonged electrocardiogram PR interval, first-degree symptomatic atrioventricular block in some patients
- Nephrolithiasis
- Increased serum transaminases
- Hyperlipidemia (occurs primarily with RTV boosting)

Special Instructions

- Administer ATV with food to enhance absorption.
- Capsules and powder packets are not interchangeable.
- Do not open capsules.
- Because ATV can prolong the PR interval of the electrocardiogram, use ATV with caution in patients with pre-existing cardiac conduction system disease or with other drugs that are known to prolong the PR interval (e.g., calcium channel blockers, beta-blockers, digoxin, verapamil).
- ATV absorption is dependent on low gastric pH; therefore, when ATV is administered with medications that alter gastric pH, dosing adjustments may be indicated (see the Drug Interactions section in the ATV package insert).
- The plasma concentration, and therefore the therapeutic effect, of ATV can be expected to decrease substantially when ATV is coadministered with proton-pump inhibitors (PPIs). Antiretroviral therapy (ART)-naive patients who are receiving any PPI should receive a dose of that PPI that is equivalent...
ART-Naive Patients Who Are Unable to Tolerate Ritonavir

Child and Adolescent (Aged ≥13 Years and Weighing ≥40 kg) and Adult Dose:

- ATV 400 mg (capsule formulation only) once daily with food
- ATV powder is not an option, since it must be administered with RTV.
- For the capsule formulation, while the Food and Drug Administration (FDA) does not recommend the use of unboosted ATV in children aged <13 years, adolescents aged ≥13 years and weighing ≥40 kg may be prescribed unboosted ATV if they are not concurrently taking tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF).

In order to achieve target drug concentrations, adolescents may require doses of ATV that are higher than those recommended for use in adults (see Pediatric Use below).
- The Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV does not recommend the use of unboosted ATV.

ART-Naive and ART-Experienced Patients

Child and Adolescent (Weighing ≥35 kg) and Adult Dose:

- Atazanavir/ritonavir (ATV/r) 300 mg/100 mg once daily with food
- Atazanavir/cobicistat (ATV/c) 300 mg/150 mg once daily with food, administered as single agents simultaneously or as the coformulated drug Evotaze

Both ATV/r and ATV/c must be used in combination with other antiretroviral drugs.

[Evotaz] Atazanavir/Cobicistat

Child and Adolescent (Weighing ≥35 kg) and Adult Dose:

- One tablet once daily with food

Atazanavir Dosing in Patients with Hepatic Impairment:

- ATV should be used with caution in patients with mild or moderate hepatic impairment. Consult the manufacturer’s prescribing information for the dose adjustment in patients with moderate impairment.
- ATV should not be used in patients with severe hepatic impairment.

Atazanavir Dosing in Patients with Renal Impairment:

- No dose adjustment is required for patients with renal impairment.
- ATV should not be given to ART-experienced patients with end-stage renal disease who are on hemodialysis.

Metabolism/Elimination

- ATV is a substrate and inhibitor of cytochrome P450 (CYP) 3A4 and an inhibitor of CYP1A2, CYP2C9, and uridine diphosphate glucuronyl transferase 1A1.

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

Downloaded from https://aidsinfo.nih.gov/guidelines on 4/26/2020
mg/kg dosing is higher for the ATV powder packets than for the capsules. In P1020A, children of similar age and size who were taking ATV powder had lower exposures than those who were taking ATV capsules.

Children weighing ≥25 kg who cannot swallow ATV capsules may receive ATV 300 mg oral powder (six packets) plus RTV 100 mg oral solution, both administered once daily with food.

Either RTV capsules or RTV oral solution can be used.

Adult patients who cannot swallow capsules may take ATV oral powder once daily with food using the adult dose for the capsules. ATV oral powder should be administered with RTV.

See the Cobicistat section for important information about toxicity, drug interactions, and monitoring of patients who receive cobicistat (COBI) and the combination of COBI and TDF.

Drug Interactions (see also the Adult and Adolescent Antiretroviral Guidelines and the HIV Drug Interaction Checker)

- **Metabolism:** Atazanavir (ATV) is both a substrate and an inhibitor of the cytochrome P450 (CYP) 3A4 enzyme system and has significant interactions with drugs that are highly dependent on CYP3A4 for metabolism. ATV also competitively inhibits CYP1A2 and CYP2C9. ATV is a weak inhibitor of CYP2C8. ATV inhibits the glucuronidation enzyme uridine diphosphate glucuronyl transferase (UGT1A1). Because there is potential for multiple drug interactions with ATV, a patient’s medication profile should be carefully reviewed for potential drug interactions before administering ATV.

- **Nucleoside reverse transcriptase inhibitors (NRTIs):** Tenofovir disoproxil fumarate (TDF) decreases ATV plasma concentrations. Only atazanavir/ritonavir (ATV/r) or atazanavir/cobicistat (ATV/c) should be used in combination with TDF. The effect of tenofovir alafenamide (TAF) on unboosted ATV is unknown; thus, only ATV/r or ATV/c should be used with TAF.

- **Non-nucleoside reverse transcriptase inhibitors:** Efavirenz (EFV), etravirine (ETR), and nevirapine (NVP) decrease ATV plasma concentrations significantly. NVP and ETR should not be administered to patients who are receiving ATV (with or without a booster). Although the combination of EFV and ATV/r is not commonly used in clinical practice, EFV may be used in combination with ritonavir (RTV)-boosted ATV 400 mg in antiretroviral therapy (ART)-naive patients. ATV/r should be taken with food, and EFV should be taken on an empty stomach, preferably at bedtime. Coadministering ATV/r and EFV in ART-experienced patients is not recommended, as this combination is expected to result in suboptimal ATV exposure in these patients.

- **Integrase strand transfer inhibitors:** ATV is an inhibitor of UGT1A1 and may increase plasma concentrations of raltegravir (RAL). This interaction may not be clinically significant.

- **Absorption:** ATV absorption is dependent on low gastric pH. The dose for ATV should be adjusted when it is administered with medications that alter gastric pH. Guidelines for the appropriate doses of ATV to use with antacids, H2 receptor antagonists, and proton-pump inhibitors in adults are complex and can be found on the package insert for ATV. No information is available on the appropriate doses of ATV to use in children when the drug is coadministered with medications that alter gastric pH.

- Coadministering cobicistat (COBI), a CYP3A4 inhibitor, and medications that are metabolized by CYP3A4 may increase the plasma concentrations of these medications. This may increase the risk of clinically significant adverse reactions (including life-threatening or fatal reactions) that are associated with the concomitant medications. Coadministration of COBI, ATV, and CYP3A4 inducers may lead to lower exposures of COBI and ATV, a loss of efficacy of ATV, and possible development of resistance. Coadministering COBI and ATV with some antiretroviral (ARV) agents (e.g., with ETR, with EFV in ART-experienced patients, or with another ARV drug that requires pharmacokinetic [PK] enhancement, such as another protease inhibitor [PI] or elvitegravir) may result in decreased plasma concentrations of that agent, leading to loss of therapeutic effect and the development of resistance.
Major Toxicities

- **More common:** Indirect hyperbilirubinemia that can result in jaundice or icterus but is not a marker of hepatic toxicity. Headache, fever, arthralgia, depression, insomnia, dizziness, nausea, vomiting, diarrhea, and paresthesia.

- **Less common:** Prolongation of the electrocardiogram PR interval. Abnormalities in atrioventricular (AV) conduction are generally limited to first-degree AV block, but there have been reports of second-degree AV block. Rash, generally mild or moderate, but in rare cases includes life-threatening Stevens-Johnson syndrome. Fat maldistribution and lipid abnormalities may be less common than with other PIs. The use of ATV/r is associated with lipid abnormalities, but to a lesser extent than with other boosted PIs.

- **Rare:** New-onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, and elevation in serum transaminases. Chronic kidney disease, including biopsy-proven cases of granulomatous interstitial nephritis that were associated with the deposition of ATV drug crystals in the renal parenchyma have occurred. Nephrolithiasis and choledolithiasis have been reported. Hepatotoxicity (patients with hepatitis B virus or hepatitis C virus infections are at increased risk of hepatotoxicity).

Resistance

The International Antiviral Society-USA (IAS-USA) maintains a list of updated resistance mutations and the Stanford University HIV Drug Resistance Database offers a discussion of each mutation.

Pediatric Use

Approval

ATV is approved by the Food and Drug Administration (FDA) for use in infants (aged ≥3 months and weighing ≥5 kg), children, and adolescents. Although the FDA has not approved the use of ATV coformulated with COBI (as Evotaz) in pediatric patients, the Panel on Antiretroviral Therapy and Medical Management of Children Living with HIV recommends use of this FDC in pediatric patients weighing ≥35 kg based on FDA approval of the component drugs.

Efficacy

Studies in ART-naive adults have shown that ATV/r is as effective as EFV and lopinavir/ritonavir (LPV/r) when these drugs are administered with two NRTIs. In ACTG A5257, ATV/r was compared to darunavir/ritonavir (DRV/r) or RAL, each administered with a TDF/emtricitabine backbone. Although all three regimens had equal virologic efficacy, the regimen that contained ATV/r was discontinued more frequently than the other regimens due to toxicity, most often hyperbilirubinemia or gastrointestinal complaints.

P1020 enrolled 195 ART-naive and ART-experienced patients with HIV aged 3 months to 21 years. Capsule and powder formulations of ATV given with and without RTV boosting were investigated in this open-label study; area under the curve (AUC) targeting was used to direct dose finding. Of the 195 patients enrolled, 142 patients received ATV-based treatment at the final recommended dose. Among these patients, 58% were ART-naive. At Week 48, 69.5% of the ART-naive patients and 43.3% of the ART-experienced patients had HIV viral loads ≤400 copies/mL.

Two open-label clinical trials in infants and children, PRINCE I and PRINCE II, studied a powder formulation of ATV that was administered once daily and boosted with liquid RTV. One hundred and thirty-four infants and children aged ≥3 months and weighing between 5 kg and 35 kg were evaluated. Using a modified intent-to-treat analysis, 28 of 52 ARV-naive patients (54%) and 41 of 82 ART-experienced patients (50%) had HIV RNA <50 copies/mL at Week 48. The median increase from baseline in absolute CD4 T lymphocyte cell count at 48 weeks of therapy was 215 cells/mm³ (a 6% increase) in ARV-naive patients and 133 cells/mm³ (a 4% increase) in ARV-experienced patients.
Pharmacokinetics and Dosing

Oral Capsule

The results of the IMPAACT/PACTG 1020A trial in children and adolescents indicate that, in the absence of RTV boosting, ATV can achieve protocol-defined PK targets—but only when used at higher doses (on a mg/kg body weight or mg per m² of body surface area basis) than the doses that are currently recommended in adults. In IMPAACT/PACTG 1020A, children aged >6 years to <13 years required 520 mg per m² of body surface area per day of the ATV capsule formulation to achieve PK targets. Unboosted ATV at this dose was well tolerated in those aged <13 years who were able to swallow capsules. The approved dose for adults is ATV 400 mg once daily without RTV boosting; however, adolescents aged >13 years required a dose of ATV 620 mg per m² of body surface area per day. In this study, the AUCs for the unboosted arms were similar to those seen in the ATV/r arms, but the maximum plasma concentration (Cmax) was higher and the minimum plasma concentration (Cmin) was lower in the unboosted arms. Median doses of ATV, both with and without RTV boosting, from IMPAACT/PACTG 1020A are outlined in the table below. When administering unboosted ATV to pediatric patients, therapeutic drug monitoring is recommended to ensure that adequate ATV plasma concentrations have been achieved. A minimum target trough concentration for ATV is 150 ng/mL.

Higher target trough concentrations may be required in PI-experienced patients. IMPAACT P1058, a study of unboosted ATV PKs in ART-experienced children, concluded that once-daily ATV 400 mg provided suboptimal exposure and that administering higher, unboosted doses or splitting the daily dose into twice-daily doses warranted investigation in ART-experienced children, adolescents, and young adults.

In the report of the IMPAACT/PACTG P1020A data, ATV satisfied PK criteria at a dose of 205 mg per m² of body surface area in pediatric subjects when administered with RTV. A study of a model-based approach that used ATV concentration-time data from three adult studies and one pediatric study (P1020A), along with subsequent additional adjusted modeling, informed the use of the following weight-based ATV/r doses that are listed in the current, FDA-approved product label for children aged ≥6 years to <18 years:

- Weighing 15 kg to <35 kg: ATV/r 200 mg/100 mg
- Weighing ≥35 kg: ATV/r 300 mg/100 mg

Cobicistat as a Pharmacokinetic Enhancer

COBI (as Tybost) is approved by the FDA at the 150-mg dose for use with ATV 300 mg in children and adolescents weighing ≥35 kg. A study of 14 adolescents, aged 12 to 18 years, showed that COBI is a safe and effective PK enhancer when used in combination with ATV and two NRTIs in adolescent patients. PK findings from this study are summarized in Table B below.

Table A. Summary of Atazanavir Dosing Information Obtained from IMPAACT/PACTG 1020A

<table>
<thead>
<tr>
<th>Age Range</th>
<th>ATV Given with RTV</th>
<th>ATV Median Dose (mg/m²)*</th>
<th>ATV Median Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6–13 years</td>
<td>No</td>
<td>509</td>
<td>475</td>
</tr>
<tr>
<td>6–13 years</td>
<td>Yes</td>
<td>206</td>
<td>200</td>
</tr>
<tr>
<td>>13 years</td>
<td>No</td>
<td>620</td>
<td>900</td>
</tr>
<tr>
<td>>13 years</td>
<td>Yes</td>
<td>195</td>
<td>350</td>
</tr>
</tbody>
</table>

* These doses satisfied protocol-defined AUC/PK parameters and met all acceptable safety targets. These doses differ from those recommended by the manufacturer. TDM was used to determine patient-specific dosing in this trial.

Key: AUC = area under the curve; ATV = atazanavir; PK = pharmacokinetic; RTV = ritonavir; TDM = therapeutic drug monitoring
The unboosted ATV powder arms in IMPAACT/PACTG P1020A were closed because participants were unable to achieve target exposures. For the IMPAACT/PACTG P1020A trial, AUC targets (30,000 ng·hr/mL to 90,000 ng·hr/mL) were established based on exposures in adults in early studies of unboosted ATV. In IMPAACT/PACTG P1020A, children aged 3 months to 2 years who were in the boosted ATV powder cohorts and who received a daily dose of ATV 310 mg per m² of body surface area achieved average ATV exposures that approached, but did not meet, protocol targets. Variability in exposures was high, especially among the very young children in this age range.8

Assessment of the PKs, safety, tolerability, and virologic response of ATV oral powder for FDA approval was based on data from two open-label, multicenter clinical trials:

- PRINCE I, which enrolled pediatric patients aged 3 months to <6 years;9 and
- PRINCE II, which enrolled pediatric patients aged 3 months to <11 years.10

One hundred and thirty-four treated patients (weighing 5 kg to <35 kg) from both studies were evaluated during the FDA approval process. All patients in the PRINCE trials were treated with boosted ATV and two NRTIs. Children received an oral solution that contained ATV and RTV. Doses were assigned according to the child’s weight:

- Weighing 5 kg to <10 kg: ATV 150 mg or ATV 200 mg and RTV 80 mg
- Weighing 10 kg to <15 kg: ATV 200 mg and RTV 80 mg
- Weighing 15 kg to <25 kg: ATV 250 mg and RTV 80 mg
- Weighing 25 kg to <35 kg: ATV 300 mg and RTV 100 mg

No new safety concerns were identified during these trials. Table C lists the PK parameters that were measured during the PRINCE trials, including mean AUC, for the weight ranges that correspond to the recommended doses.

Table B. Pharmacokinetic Parameters for Atazanavir Administered with Cobicistat (as Tybost) in Pediatric Patients Aged 12 to 18 Years and Adults

<table>
<thead>
<tr>
<th>PK Parameters4</th>
<th>ATV</th>
<th>COBI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pediatric Patients</td>
<td>Adult Patients</td>
</tr>
<tr>
<td></td>
<td>(n = 12)</td>
<td>(n = 30)</td>
</tr>
<tr>
<td>AUC(\text{taU}) μg·h/mL</td>
<td>49.48 (49.1)</td>
<td>39.96 (52.1)</td>
</tr>
<tr>
<td>C(\text{max}) μg/mL</td>
<td>4.32 (49.9)</td>
<td>3.54 (45.8)</td>
</tr>
<tr>
<td>C(\text{taU}) μg/mL</td>
<td>0.91 (96.4)</td>
<td>0.58 (84.7)</td>
</tr>
</tbody>
</table>

4 The information in this table comes from the Tybost package insert.10

Key: ATV = atazanavir; AUC\(\text{taU}\) = area under the concentration time curve over the dosing interval; C\(\text{max}\) = maximum serum concentration; COBI = cobicistat; C\(\text{taU}\) = trough serum concentration at the end of the dosing interval; CV = coefficient of variation; PK = pharmacokinetic

Oral Powder

The unboosted ATV powder arms in IMPAACT/ PACTG P1020A were closed because participants were unable to achieve target exposures. For the IMPAACT/PACTG P1020A trial, AUC targets (30,000 ng·hr/mL to 90,000 ng·hr/mL) were established based on exposures in adults in early studies of unboosted ATV. In IMPAACT/PACTG P1020A, children aged 3 months to 2 years who were in the boosted ATV powder cohorts and who received a daily dose of ATV 310 mg per m² of body surface area achieved average ATV exposures that approached, but did not meet, protocol targets. Variability in exposures was high, especially among the very young children in this age range.8
While the PK targets were met in these PK studies of ATV powder in all patients except those who received ATV/r 150 mg/80 mg in the 5 kg to <10 kg weight band, there were large coefficients of variation, especially among the youngest patients.

Transitioning from Powder to Capsules

For children who reach a weight ≥25 kg while taking the powder, ATV 300 mg powder (six packets) plus RTV 100 mg oral solution, both administered once daily with food, may be used. ATV capsules should be used for children who can swallow pills. Bioavailability is higher for the capsules than for the powder; therefore, a lower mg/kg dose is recommended when using capsules. Opened capsules have not been studied and should not be used.

Toxicity

Nine percent of patients enrolled in the IMPAACT/PACTG 1020A trial had a total bilirubin ≥5.1 times the upper limit of normal.12 Nine percent of patients enrolled in the PRINCE studies had a total bilirubin ≥2.6 times the upper limit of normal.9,11 The most common laboratory abnormality during the PRINCE trials was elevated amylase levels, which occurred in 33% of patients.10 Three children (2%) had treatment-related cardiac disorders during the PRINCE trials; one child discontinued therapy due to QTC prolongation and two experienced first-degree AV block.9,11 In IMPAACT/PACTG P1020A, three children (3%) had QTC prolongations >470 msec; two of these children came off study, and all were asymptomatic.

References

3. Malan DR, Krantz E, David N, et al. Efficacy and safety of atazanavir, with or without ritonavir, as part of once-

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection M-94

Downloaded from https://aidsinfo.nih.gov/guidelines on 4/26/2020

